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Abstract

Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked
questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit
such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations.
Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The
resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of
10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected
non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop
tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher
luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice.
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Introduction

Detection of tumors at early stages is critical for effective tumor

treatment and for studying tumorigenesis[1,2,3]. Traditionally,

tumor growth was assessed by using mechanical or electronic

calipers to take physical measurements of subcutaneous human

tumors growing in immunocompromised mice[4]. This method is

suitable, however, only for palpable tumors growing under the skin

of the animals. Deeper tumor masses, such as osteosarcomas

encapsulated by the bone, are not amenable to direct physical

measurements. Even in subcutaneous models, tumor burdens may

not be accurately quantified using physical measurements because

edema and necrotic centers will contribute to the increase in

tumor size[5]. Orthotopic solid tumor models circumvent these

obstacles and allow fairly accurate assessment of tumor burdens by

weighing the excised, ‘‘cleaned’’ tumors after the animals are

sacrificed. Classical orthotopic models are impractical for

evaluation of compounds’ efficacy since they require large

numbers of animals to be sacrificed at each time point. Similarly,

identification of tumors and quantification of tumor burden in

models of metastasis demand exhaustive and tedious histological

analyses[6,7,8].

Non-invasive whole body bioluminescence imaging (BLI) allows

repeated, real-time in vivo monitoring of tumor growth in

experimental animals, regardless of tumor locations. In contrast

to fluorescence, BLI exhibits minimal background signals from the

animal tissues[9]. Therefore, BLI can detect relatively weak signals

with high signal to background ratio. Due to its versatility, BLI has

been adopted to study preclinical efficacy of drug candi-

dates[10,11,12,13] as well as various aspects of mammalian

biology via reporter assays[14,15].

Recently, firefly (Photinus pyralis) luciferase was re-engineered to

further optimize its expression in mammalian cells. Compared to

previous generations of luciferase, the new version (luc2) delivers

more than a four-fold increase in light emission which was

achieved by codon optimization and removal of potential

transcription factor binding sites[16]. We postulated that individ-

ual cancer cells could be detected in vivo by harnessing the

increased bioluminescence of luc2. To that end, we engineered a

lentiviral vector where luc2 expression is driven via the human

ubiquitin C promoter[17]. The construct was then stably

transfected into the 4T1 mouse mammary tumor cell line[18,19].

Several stable, single-cell clones (4T1-luc2) were subsequently

isolated with light emission in the range of 10,000 photons/sec/

cell. Here, we report that, at least in some cases, detection of a

single cancer cell in vivo using one of these luc-2 labeled clones was

achieved. We also show development of tumors from only few cells

implanted into nu/nu mice and detection of metastases in

syngeneic Balb/c mice. To our best knowledge, this is the first

report of detection of a single bioluminescent cell in vivo using a
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non-invasive imaging method. Such bright cells can be effectively

used to monitor efficacy of drug candidates in models of metastasis

and orthotopic tumor models, to track metastatic migration of

cancer cells, and can be also utilized to accurately ascertain

whether any residual disease remains following the treatment.

Results

Generation of a Lentiviral Vector System and Stable
4T1-luc2 Cell Lines

A lentiviral vector containing the firefly luc2 gene conjugated to

a human ubiquitin C promoter was constructed to generate stable

bioluminescent cancer cell lines[16,17,18]. Mouse mammary

tumor 4T1 cells were then transfected with the lentiviral vector

and stable clones were selected using puromycin (4T1-luc2). Eight

clones were chosen for further analyses and their luciferase

activities were monitored for four weeks without selection marker.

Although there were variations among the clones, the majority of

them clones emitted more than 3,000 photons/sec/cell of light.

Considering that most cell lines labeled with previous generations

of luciferase emit less than 250 photons/sec/cell, our luc2 clones

exhibited considerably higher level of light emission[20]. Surpris-

ingly, one clone (C26) initially emitted as much as 52,000

photons/sec/cell but its light emission decreased to 6,400

photons/sec/cell after four weeks (Figure S1A). To confirm that

no alteration of cellular physiology occurred during the labeling/

cloning process, we compared the clones to the original parental

4T1 cells on several different levels. First, we examined growth

patterns. From the eight initially selected clones, we chose two

lines (C27 and C38) and compared their growth patterns to the

parental 4T1 cells. Both lines had similar doubling times to the

parental cells (12.6 hour doubling time for both clones, versus 12.0

hours for the original 4T1 cells).

We also examined other critical parameters of cellular

physiology, including effects of ATP consumption. Since luciferase

uses one molecule of ATP to produce each photon of light, high

levels of light emission could be detrimental to the cell’s

metabolism due to the depletion of the its ATP pool. To test

whether the high light production affects cell physiology, we

observed cell growth for four days in the presence of high

concentrations of the luciferase substrate, D-luciferin (150 and

300 mg/ml/day). The results demonstrated that, in the presence of

D-luciferin, 4T1-luc2 clones showed similar growth patterns to

those of cells cultured without D-luciferin and to the parental 4T1

cells (Figure S1B,C,D). This suggests that 4T1-luc2 cells can

endure consumption of the ATP required for the high light

emission without a significant effect on the cell’s ATP pool.

Since clone C26 showed decreasing luciferase activity over time,

we attempted the second round of limited dilution single cell

cloning from the original mixed population. Four bright clones

were selected and their luciferase activities (light emission) were

monitored for six weeks without selection pressure (Figure 1A,B).

All clones initially produced more than 40,000 photons/sec/cell;

then the light emission declined to 10,000 photons/sec/cell, and

stabilized at that level. It remained stable for four weeks in the

absence of puromycin (Figure 1B). From these clones, the 1A4

clone (4T1-luc2-1A4) was selected for further studies. The growth

pattern of the 4T1-luc2-1A4 was comparable to that of the

parental 4T1 cells in the presence, or absence of D-luciferin

(Figure 1C,D,E). To address the cause of the initial decrease of

light emission in 4T1-luc2-1A4 clone, we performed limited

dilution culture in 96-well plates. When cells grew to about 25%

confluency, we examined luciferase expression by bioluminescent

imaging. Every well containing cells showed luciferase activity.

These results indicate that the initial decrease of luciferase activity

was not due to the loss of luciferase expression in some cells of the

clone (Figure S2).

Non-Invasive Detection of Small Numbers of Cells in
nu/nu Mice

Because 4T1-luc2 cells showed extremely high light emission,

we next attempted to detect small numbers of these cells in vivo.

Initially, the 4T1-luc2-1A4 cells were prepared using a serial

dilution method and were implanted into both flanks of the female

nu/nu mice (Figure 2). Different numbers of cells were implanted

at each implantation sites. Six implantations were performed for

each number of cells (3, 5, 10, and 50 cells). Bioluminescence

images were taken immediately after the implantations. Using a

highly sensitive cooled CCD camera, we were able to detect as few

as 3 cells in this experiment (Figure 2A-D, red dotted circles). In

some instances, however, we did not detect any meaningful signals

from the sites of implantation (Fig 2A-D, yellow dotted circles).

This could be attributed to cell death immediately after implan-

tation or to inherent variability of the serial dilution method when

the intended number of cells is very small (Fig 2A-D, yellow

circles). Separately, we took PC3M-luc-C6 which was one of the

brightest cell lines (,250 photons/sec/cell) generated by us thus

far (using multiple rounds of transfections by pGL3) and compared

it with 4T1-luc2-1A4 cells, by implanting both into SCID-bg mice

(Figure S3). The results illustrate that the bioluminescent signals

from 102 4T1-luc2-1A4 cells in furry mice was easily detectable,

while no signal was detected from the same number of PC3M-luc-

C6 cells.

Six hours after the implantations, we re-imaged the same set of

animals (Fig 2E-H). As expected, based on the hostile post-

implantation environment, 4 sites of the 10- and 50 cell

implantation sites lost their initial bioluminescent signals

(Fig 2G,H). Surprisingly, however, we were able to detect signals

from 3- and 5 cell implantation sites (Figure 2E,F). Our analyses of

the images taken immediately after the implantation (t = 0)

indicate that total flux from the implantation sites was directly

proportional to the number of cells implanted (Fig 2I). This is

consistent with the other data (not shown) demonstrating linear

relationship between the light emission and the number of cells

plated in vitro. Based on these results, we demonstrated that

bioluminescence measurement is a plausible method to accomplish

non-invasive monitoring of the early tumor growth in vivo.

Detection of a Single Bioluminescent 4T1-luc2 Cell In Vivo
After confirming non-invasive detection of three cells in vivo, we

challenged ourselves to detect a single 4T1-luc2-1A4 cell after

subcutaneous implantation. To eliminate the experimental error

and to add accuracy to the determination of the number of

implanted cells, we used a micropipettor to implant a single 4T1-

luc-2-1A4 cell. First, the 4T1-luc2-1A4 cells were trypsinized and

plated on a cell culture dish. Next, individual cells were picked up

and implanted using a micropipettor into subcutaneous slots made

in the flank regions of mice. Mice were divided into two groups:

four mice were implanted with single cells, and four other mice

were implanted with 10 cells each (Figure S4C,D). Animals were

then subjected to bioluminescence imaging immediately after the

implantation. In some cases, we were able to detect a single 4T1-

luc2-1A4 cell (Figure 3A-C and Figure S4A,B). On each of the

three independent, sequential images of the same single cell we

registered a total flux ranging from 460 to 528 photons/sec. Line

profiling analyses of the registered flux from a single cell revealed a

signal to background ratio of 6 to 1, with the signal clearly

originating from the implantation site (Figure 3D,E). Therefore,

Single Cell Detection In Vivo
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we concluded that the bioluminescent signal indeed originated

from a single 4T1-luc2-1A4 cell. The lack of signal from the other

three sites in each group could be attributed to rapid cell death.

Tumor Development from Small Populations of 4T1-luc2
Cells

After detecting a single cell in vivo, the mice implanted with 1–50

cells were monitored for extended period of time to detect possible

tumor growth. We hypothesized that implantation of larger

numbers of cells would circumvent the problem that hostile post-

implantation environments present to smaller numbers of cells.

Given that routine tumor implantation procedures utilize 0.5 to 10

millions of cells in subcutaneous tumor models, we did not expect

tumors to arise from such small numbers of cells. To our surprise,

two mice that were implanted with 5 and 10 cells developed solid

tumors. We continued to image these mice, and once the tumors

became palpable, we also physically measured their dimensions

using standard calipers. The tumors arising from 5-cell and 10-cell

implantations could not be detected with calipers before day 27

and day 29, respectively (Figure 3G,I). However, non-invasive

visible light imaging, allowed us to detect and quantify tumor

burdens continuously from the time of implantation (Figure 3F,H).

These data clearly show that tumor growth can be monitored

using non-invasive bioluminescence imaging as soon as cells are

implanted in an animal, even when as few as five cells are

implanted.

Metastases of 4T1-luc2-1A4 Cells in Syngeneic Balb/c
Mice from the Orthotopic Implantation into the
Mammary Fat Pad

To test metastatic properties of the 4T1-luc2-1A4 cells, we

orthotopically implanted these cells into mammary fat pads of

female nu/nu mice (56105 cells per mouse, n = 9). The primary

tumors grew rapidly and developed metastatic lesions that could

be detected using bioluminescence imaging by day 27 (Figure 4).

To confirm metastasis of tumor cells into lungs, we isolated lung

tissues on day 27 post-implantation and took ex vivo images

(Figure 4B). In addition, we performed histological analyses on

formalin-preserved, paraffin sectioned tissues. The results showed

that pleura and subpleural regions of the lungs were infiltrated

Figure 1. Generation of 4T1-luc2-1A4 cells and their growth patterns in the presence or absence of D-luciferin. (A) Generation of 4T1-
luc2-1A4 cells. Mouse mammary tumor 4T1 cells were transfected with a lentiviral vector containing enhanced luciferase 2 under control of the
human ubiquitin C promoter[16,18]. Puromycin-resistant clones were isolated and their luciferase expressions were screened by bioluminescence.
Two rounds of cloning generated 4 single cell clones of 4T1-luc2. Luciferase activities were measured using an IVIS Spectrum (Binning: med, f stop: 1,
exposure time: 1 sec). A typical bioluminescence image for testing stability of luciferase expression is shown. Total flux (photons/sec) was quantified
using Living Image software 3.0. Clone 4T1-luc2-1A4 was selected and used for further studies. (B) Stability of luciferase activity of four 4T1-luc2
clones. Cells were grown for 6 weeks in regular media without puromycin and their light emission was monitored weekly. All clones showed more
than 7,000 photons/sec/cell of light emission throughout the test period. (C) Growth curves of the 4T1-luc2-1A4 clone and parental 4T1 cells. Cells
were grown for 4 days in regular growth medium without puromycin. Total numbers of cells over time were plotted in a logarithmic scale. Both cell
lines showed similar growth patterns and doubling times. (D,E) Growth of the 4T1-luc2-1A4 clone and parental 4T1 cells in the presence of D-luciferin.
Cells were fed with D-luciferin once a day (150 mg/ml/day, D) or twice a day (300 mg/ml/day, E), respectively, harvested at each time point and
counted. Presence of the excess of D-luciferin did not affect the overall growth patterns of the 4T1-luc2 cells.
doi:10.1371/journal.pone.0009364.g001

Single Cell Detection In Vivo
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with sheets of poorly differentiated neoplastic cells demonstrating that

bioluminescent imaging can effectively detect micrometastases in a

mouse (Figure 4C,D). However, it is difficult to speculate exactly how

many cells resided in the metastasized tumor masses based on the

light emission registered in vivo since the emitted light is attenuated

and scattered depending on path it takes through the tissues, and the

exact location of these tumors has not been elucidated.

Next, we confirmed the detection of metastases by biolumines-

cence via physical dissection. We created a second group of Balb/c

mice, into whose mammary fat pads we implanted 5.06104 4T1-

luc2-1A4 cells (n = 16). Primary tumors were then resected at post-

implantation day 10 to stop the growth of the tumors in the fat

pads, and bioluminescent images were taken at various post-

resection (PR) time points (PR-day 5, 8, 12, 15, 19, 22). Our data

showed that tumors metastasized into the secondary sites in the

body and continued to grow there (Figure 5A). Tumor growth was

monitored longitudinally by quantitating bioluminescence signals

from the whole body (Figure 5B). The results demonstrated

continuous increase of the light emission before and after resection

of the primary tumors, confirming that monitoring biolumines-

cence signals is an ideal way to track tumor metastases.

Discussion

Xenografting of luciferase-labeled cancer cells is widely

accepted in models of metastasis and in orthotopic models. As

discussed above, bioluminescent imaging of luciferase-labeled

cancer cells has the added advantage over traditional methods of

assessing tumor burden in that it allows non-invasive detection and

quantitation of tumors in live animals as means of assessing drug

efficacy[21,22,23]. Despite the fact that tissues normally contribute

little background in bioluminescence imaging, increasing the light

emission from the cells of interest is always desirable since it

improves the sensitivity of detecting tumor cells. Increased

sensitivity allows smaller numbers of tumor cells present in early

stages of tumor progression to be detected. This conceivably has

significant clinical relevance given that early detection, when

combined with early treatment, has been correlated with better

prognoses. The tools described here allow one to compare the

effectiveness of a given pharmacological intervention on early

stage primary tumors, late stage primary tumors, and metastases.

Herein we report development of a bright 4T1-luc2 cell line

using enhanced luciferase (luc2) and lentiviral technology. In our

Figure 2. Detection of small numbers of 4T1-luc2-1A4 cells in vivo. (A-D) Defined numbers of cells were implanted subcutaneously in dorsal
flank regions of female nu/nu mice[1]. Each mouse received two implantations. Insets indicate the number of cells implanted. D-luciferin was injected
into mice immediately after the implantation and bioluminescent images were taken (t = 0) using an IVIS Spectrum (FOV; A, binning; small, f stop; 1,
exposure time; 5 min). (E-H) After 6 hours of implantation, all mice were re-imaged using the same settings of IVIS Spectrum (t = 6h). Red circles
represent the implantation sites that had bioluminescent signals higher than autoluminescence. Yellow circles indicate the implantation sites that did
not generate any meaningful signals possibly due to immediate cell death. (I) Correlation between the number of implanted cells and the total flux
from the implantation sites. Bioluminescent signals were quantitated using Living Image software 3.0 and plotted against the numbers of cells. The
measured intensity of bioluminescence was directly proportional to the number of implanted cells. Asterisks (*) indicate tissue autoluminescence.
doi:10.1371/journal.pone.0009364.g002
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attempts to detect small numbers of cells, we initially used a serial

dilution method and could detect down to 3 cells in vivo.

Encouraged by these results, we challenged ourselves to detect a

single 4T1-luc2-1A4 cell after subcutaneous implantation via

microinjection. Because the signal from a cell was located in

proximity to the gut, which exhibits an intrinsic, albeit variable

auto-bioluminescence, our images of single cells contain both,

signals from the cell, as well as background from the gut

(Figure 3B). However, as shown on the images of 5- and 10-

cells, when the numbers of cells increased, the signals from the cells

quickly surpassed the background signals from the gut. During the

course of preparation of this manuscript, Rabinovich et al. showed

the detection of three engineered murine T lymphocytes in vivo in a

subcutaneous transplantation[24]. While application of the elegant

system described by Rabinovich et al. was developed to achieve

efficient transduction for a specific cell subtype, we have

engineered a simple, universal vector to transduce various types

of proliferating and non-proliferating cells. Moreover, to the best

of our knowledge, our report is the first one that shows detection of

a single bioluminescent cancer cell in vivo.

Because high level of luciferase expression increases the sensitivity

of cell detection in live animals, this technology can be directly

applied to primary cell and stem cell detection in vivo, including

cancer stem cells[25,26,27]. The lentivirus technology can conceiv-

ably prove useful for labeling stem cells since it can significantly

minimize handling and culturing of these cells. Our results showed

that as few as 5 and 10 cells can grow and form tumors in the

animals. These tumors can be monitored using bioluminescence

imaging from the day of implantation. Previously, 4T1 cells were

transformed with luciferase and their tumor metastases were

visualized using optical imaging[28]. While this study demonstrated

non-invasive monitoring of tumor metastases, the present study

enables earlier detection of tumor metastases, and allows following

the tumor formation process right from the cell implantation (Day 0

vs. 6 weeks). Furthermore, our results suggest that labeling and

tracking cancers growing from a single cancer stem cell is feasible. In

addition, this technology could also be applied more generally to

follow the fate of a single stem cell implanted into an animal.

Furthermore, the process of drug screening for either small

molecules or biologics which target cancer stem cells can be

significantly expedited since bioluminescence allows following

growth of tumors in vivo weeks before they become palpable.

Brightly luminescent cells also provide a better means of

detection of micrometastases in an animal, thus making models of

Figure 3. Detection of a single 4T1-luc2-1A4 cell in vivo. (A-C) Bioluminescent signal of a single 4T1-luc2-1A4 cell in vivo. A single cell was
implanted into the back of a nu/nu mouse. D-luciferin was injected into the mouse intraperitoneally and bioluminescent images were taken using an
IVIS Spectrum (FOV; C, binning; small, f stop; 1, exposure time; 5 min). Images for pre- and post-luciferin injection were shown in panels (A) and (B),
respectively. Magnified image of the dotted area from panel (B) is shown on panel (C). The dotted circle represents the single cell signal. The asterisk
(*) indicates the background signal from the gut. (D,E) Line profiling analysis of single cell signal. Light emission was plotted along the line shown on
panel (D). Peak signal in the panel (E) represents the light emission from a single 4T1-luc2-1A4 cell. (F) Tumor development from five 4T1-luc2-1A4
cells. Cells were implanted subcutaneously (using a micropipette) into the dorsal flank region of a nu/nu mouse. Bioluminescent images were first
taken before the D-luciferin injection (Pre-luciferin). The animal was then imaged on day 0 through day 42. (G) Monitoring of tumor growth from 5
cells of 4T1-luc2-1A4. Bioluminescent signals were quantified using Living Image software and plotted against physical tumor volume measurements
by a caliper. Tumor was not palpable till day 27 post-implantation while bioluminescent signals were detected from the day 0. Note that total flux
was plotted in a logarithmic scale. (H) Tumor development from 10 cells of 4T1-luc2-1A4. Cells were implanted subcutaneously (using a micropipette)
into the back of a nu/nu mouse. The background signal is shown in pre-D-luciferin injection image (Pre-luciferin). The tumor growth was monitored
for 40 days using an IVIS Spectrum and a caliper. (I) Monitoring of tumor growth from 10 cells of 4T1-luc2-1A4. Tumor volumes were measured using
a caliper and plotted against bioluminescent signals which were quantified using Living Image software. Tumor was not palpable till day 29 after
implantation. On the contrary, bioluminescent signals were distinct from the day 0 of implantation.
doi:10.1371/journal.pone.0009364.g003

Single Cell Detection In Vivo
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metastasis more accurate and allowing predictive models to be used

for evaluation of drug candidates that aim to combat metastasis.

When 4T1-luc2-1A4 cells were implanted into syngeneic Balb/c

mice, we were able to detect multiple micrometastases in secondary

sites. When primary tumors were surgically removed at 27 days

after the implantation, we could follow the growth of small,

metastatic tumors in the absence of the dominating signal from the

primary tumor. Brighter cells can reduce the time and effort

required to identify tumor masses in an animal and can also be

valuable in studying tumor microenvironments, particularly when

combined with other non-invasive fluorescence-based readouts.

To date, we have labeled more than a dozen human and

murine tumor cell lines using the described lentiviral system (data

not shown). All labeled cell lines showed significantly higher

luciferase expression compared to the cell lines labeled with

previous generation of luciferase and conventional transfection

methods (data not shown). Another advantage of these newly

engineered cell lines is that no antibiotic selection is required to

maintain stable luciferase expression. In contrast to the popular

viral promoters such as SV40 or CMV, human ubiquitin C

promoter is more resistant to gene silencing in mammalian

cells[29]. We have used our technology to successfully label

adherent, as well as suspension cell lines, and we believe that it

constitutes a universal tool for efficient introduction of luciferase

into almost any cell. Since lentiviral vectors can introduce genes of

interest into dividing as well as non-dividing cells, our technology

can be easily applied to label not only stem cells, but practically

any cells derived from patients, which then can be used for

research, or for diagnostic purposes.

Materials and Methods

Generation of Lentivirus Vector
Enhanced luciferase 2 (luc2) cDNA was from pGL4.20 vector

(Promega, WI)[16]. Luciferase 2 cDNA was excised with Hind III

& Xba I and ligated into pUB6-V5-HisB vector (Invitrogen, CA).

A fragment generated by Bgl II and BstB I digestion of pUB6-luc2

was ligated into a modified pLPCX vector (Clontech, CA). A

lentiviral vector that carries human ubiquitin C promoter and luc2

cDNA was generated by inserting Bgl II & EcoR I fragment from

above construct into Bcl I & EcoR I of the modified pLKO.1

vector (Sigma-Aldrich, MO)[18,19].

Cell Culture
Mouse mammary gland tumor cell line 4T1 was obtained from

the ATCC (Manassas, VA). Cells were grown in high glucose RPMI

1640 medium (ATCC). PC-3M-luc-C6 cells were grown in minimal

essential medium (ATCC) (For supplemental data)[30]. All media

was supplemented with 10% fetal bovine serum (Hyclone, UT)

without antibiotics. Growth curves were generated by seeding

50,000 cells in T25 flasks. At each time point, cells were trypsinized

and counted using an automatic cell counter (Nexcelom, MA). Total

numbers of cells were plotted in a logarithmic scale.

Transfection and Stable Cell Line Generation
The lentiviral vector was transfected using a lipid based method

into 4T1 cells. Transfected cells were selected using puromycin

(2 mg/ml). Isolated clones were screened for their luciferase

activities using an IVIS Spectrum (Caliper Life Sciences, MA).

Figure 4. Non invasive detection of micrometastases and histological analysis. (A) Female nu/nu mice were inoculated with 56105 4T1-
luc2-1A4 cells orthotopically into the abdominal mammary fat pads[1]. Bioluminescent images were taken longitudinally. At post-implantation day
27, micrometastases were detected in lungs (arrows) (B) The lungs were isolated at post-implantation day 27 and ex vivo image was taken. (C,D) Lung
tissues were fixed in formalin and embedded in paraffin. H&E staining was performed and analyzed. Panel D represents the dotted area in panel C.
doi:10.1371/journal.pone.0009364.g004

Single Cell Detection In Vivo
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To isolate single cell clones, cells were subjected to limited dilution.

Individual clones were screened for luciferase activity using an

IVISH Spectrum. Selected clones were maintained without

puromycin for 4 weeks and their light emission was monitored

every week.

Mice and Tumor Cell Implantation
All procedures for animal care and tumor cell implantation

followed the approved animal protocols and guidelines of the

Institutional Animal Care and Use Committee at Caliper Life

Sciences and Momenta Pharmaceuticals. Prior to implantation, all

tumor cells tested negative for the presence of mycoplasma and

mouse pathogens. The orthotopic implantation of 4T1-luc2-1A4

cells into mammary fat pads of nu/nu or Balb/c mice was

performed while animals were under isoflurane anesthesia[1].

Subcutaneous implantations were done by injecting cells under the

skin in the dorsal flank regions. Single, and ten cell implantation

was performed using a customized glass capillary pipette with

manual aspiration. After the implantation, pipettes were examined

under the microscope to make sure that all cells were implanted.

Four implantations were done for each, one and ten cell

implantations. For the data shown on Figure 2, six implantations

were performed, three mice per each of the two groups.

In Vitro and In Vivo Bioluminescence Imaging
For in vitro luciferase assay, cells were plated on black walled

24-well plates at an initial concentration of 50,000 cells/well.

Cells were grown overnight with regular growth medium. After 24

Figure 5. 4T1-luc2-1A4 tumor metastases in syngeneic Balb/c mice. (A) Metastases of 4T1-luc2-1A4 tumors in Balb/c mice. 5.06104 cells were
orthotopically implanted into mammary fat pads of the mice (n = 16)[1]. Ventral Images were taken at three time points post-implantation (PI-days: 4,
7, 8). Primary tumors were resected at PI-day 10 and images were taken again at various post-resection time points (PR-days: 5, 8, 12, 15, 19, 22). Two
representative mice (C1M2 and C4M4) are shown. The apparent decrease of the bioluminescence signals at PR-day 12 was due to the adjustment of
the color bar scale (see panel B). Primary tumor resection time point is indicated by the red line separating the pre-and pot-resection images. (B) Plots
of bioluminescence signals vs. time for mice C1M2 and C4M4. Whole body bioluminescence signals of mice C1M2 (blue lines) and C4M4 (orange
lines) were quantitated and plotted in a logarithmic scale. Quantitations of bioluminescence signals before and after resection of the primary tumors
are shown.
doi:10.1371/journal.pone.0009364.g005
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hours, the regular medium was replaced with the D-luciferin

containing medium (150 mg/ml). Bioluminescence images were

taken immediately after adding the substrate into the cells using an

IVIS Spectrum. Light outputs were quantified using Living Image

3.0 (Caliper Life Sciences, Alameda, CA). Prior to the in vivo

imaging, the mice were anesthetized with isoflurane. D-luciferin

solution was then injected intraperitoneally (150 mg/kg). The

mice were imaged using an IVIS Spectrum. Bioluminescent

signals were quantified using Living Image 3.0 (Caliper Life

Sciences, Alameda, CA).

Histological Analyses
Female nu/nu mice were inoculated with 56105 4T1-luc2-1A4

cells orthotopically into the abdominal mammary fat pad (n = 9).

At day 27 post-implantation, lung tissues were isolated and

analyzed histopathologically. Tissues were fixed and embedded in

paraffin. H&E staining was performed. Slides were examined by a

certified pathologist.

Supporting Information

Figure S1 (A) Generation of 4T1-luc2 cells. Mouse mammary

tumor 4T1 cells were transfected with a lentiviral vector containing

enhanced luciferase 2[18,31]. Puromycin resistant clones were

isolated and their luciferase expression was screened by biolumi-

nescence. Initial cloning generated 8 clones of 4T1-luc2. Luciferase

activity was measured using an IVIS Spectrum (Binning: med,

f stop: 1, exposure time: 1 sec). Total flux (photons/sec) was

quantified using Living Image software 3.0. Stability of luciferase

activities of the 4T1-luc2 clones were monitored for 4 weeks and

their light emission was measured weekly. All clones showed higher

than 3,000 photons/sec/cell of the light emission throughout the

test period. (B) Growth curves of the 4T1-luc2-C27 and the 4T1-

luc2-C38 clones vs. parental 4T1 cells. The cells were grown for 4

days in a regular growth medium without puromycin. The total

numbers of cells over time are plotted in a logarithmic scale. Both

cell lines showed similar growth patterns and doubling times. (C,D)

Growth of the 4T1-luc2-C26 and the 4T1-luc2-C36 clones vs.

parental 4T1 cells in the presence of D-luciferin. The cells were fed

with D-luciferin once a day (150 mg/ml/day, C) or twice a day

(300 mg/ml/day, D), respectively. The cells were harvested at each

time point and counted. Presence of excess of D-luciferin did not

affect the overall growth patterns of the 4T1-luc2 cells.

Found at: doi:10.1371/journal.pone.0009364.s001 (1.59 MB TIF)

Figure S2 (A) Limited dilution culture was performed with 4T1-

luc2-1A4 cells in four 96-well plates. Cells were grown for 10 days

and examined their luciferase expression by adding D-luciferin

into the culture media. Bioluminescent images were taken

immediately. Wells that did not show any luciferase activity did

not contain live cells.

Found at: doi:10.1371/journal.pone.0009364.s002 (5.36 MB TIF)

Figure S3 (A-D) The 4T1-luc2-C26 and the PC3M-luc-C6 cells

were subcutaneously implanted into flank regions of SCID-bg

mice. Equal numbers of cells for each cell line was implanted.

Bioluminescence images were taken 20 hrs post-implantation

using an IVIS Spectrum. Numbers of implanted cells are shown

on the inserts. Imaging conditions (A,B; FOV: B, binning: small, f

stop: 1, exposure time: 30 sec; C,D; FOV: B, binning: small, f stop:

1, exposure time: 5 min).

Found at: doi:10.1371/journal.pone.0009364.s003 (2.72 MB TIF)

Figure S4 (A, B) Bioluminescent signal of a single 4T1-luc2-1A4

cell in vivo. Female nu/nu mouse was implanted with a single 4T1-

luc2 cell subcutaneously in the dorsal region. Mouse was imaged

prior to D-luciferin injection (A). Ten minutes after the D-luciferin

injection, whole mouse image was taken (FOV; C, binning; small, f

stop; 1, exposure time; 5 min) (B). Dotted circle indicates the signal

from the implanted cell. (C) Whole mouse (nu/nu) image with

implanted ten 4T1-luc2-1A4 cells. The exact number of cells was

picked up by a glass capillary pipet and was injected into the back

of the mouse subcutaneously, through a skin incision. (D)

Magnified image of dotted area from panel C. Dotted circle

indicates the signal from 10 cells. Asterisk (*) indicates the skin

incision site.

Found at: doi:10.1371/journal.pone.0009364.s004 (3.57 MB TIF)
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